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Abstract—Improving the performance of high-level com-
puter vision tasks in adverse weather (e.g., haze) is highly
critical for autonomous driving safety. However, collecting
and annotating training sets for various high-level tasks
in haze weather are expensive and time-consuming. To
address this issue, we propose a novel haze generation
model called HazeGEN by coupling the variational autoen-
coder and the generative adversarial network to automati-
cally generate annotated datasets. The proposed HazeGEN
leverages a shared latent space assumption based on an
optimized encoder–decoder architecture, which guarantees
high fidelity in the cross-domain image translations. To en-
sure that the generated image can truly facilitate high-level
vision task performance, a semisupervised learning strat-
egy is developed for HazeGEN to efficiently learn the useful
knowledge from both the real-world images (with unsuper-
vised losses) and the synthetic images generated following
the atmosphere scattering model (with supervised losses).
Extensive experiments and ablation studies demonstrate
that training the model with our generated haze dataset
greatly improves accuracy in high-level tasks such as se-
mantic segmentation and object detection. Furthermore,
one important but under-exploited issue is investigated to
find out whether the developed dataset can be a good sub-
stitute for the real ones. Results show that the generated
dataset has the most similar performance to the real-world
collected haze dataset on multiple challenging industrial
scenarios compared with prior works.
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I. INTRODUCTION

D EEP neural networks (DNNs) have become successful in
many computer vision tasks [1], [2], e.g., image recog-

nition, object detection, semantic segmentation, etc. However,
when facing adverse weather, such as haze/fog, the captured im-
ages lose details and are affected by color casting, which severely
degrades the DNN models’ performance on high-level tasks and
influences the reliability and efficiency of vision-based systems
such as autonomous vehicles (see Fig. 1). Thus, improving the
robustness and efficiency of the DNN model in adverse weather
attracts significant research attention [3].

One of the solutions to enhance the image quality is to use
the preprocessing image enhancement module, such as dehazing
module [4]. However, this solution cannot satisfy practical needs
due to the lack of consideration of the resource constraint of
industrial autopilot systems, which severely slows down the
processing process and violates the need for the real-time ap-
plications. Furthermore, existing image preprocessing methods
might not necessarily be effective for high-level tasks in real-
world, because the commonly adopted evaluation metrics (e.g.,
peak signal-to-noise ratio and structural similarity index) mainly
target the signal fidelity between the dehazed images and the
corresponding clean ones, which might fail to stand for the
performance on high-level tasks [5].

Using a particular annotated dataset to train the model can
be a more practicable way for high-level tasks. To obtain the
required dataset, some efforts are made to simulate a foggy
dataset. Sakaridis et al. [5] and Gao et al. [6] used the atmosphere
scattering model [7] to generate a hazy dataset as defined as
follows:

I(x) = J(x)t(x) +A(x)(1 − t(x)). (1)

The hazy image I(x) is constructed from haze-free image
J(x), transmission map t(x), and global atmospheric lightA(x).
However, the synthetic t(x) andA(x)might not be reasonable at
the given scenes, which leads to artifacts, such as color casting
and noises. Gong et al. [8] tried to learn a direct mapping across
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Fig. 1. Application scenario of the proposed model: the detection
model without fine-tuning on our generated haze dataset fails to detect
all targets, which may cause severe security issues in autonomous
driving systems.

different domains by using supervised learning with the existing
synthetic dataset. However, without the adaption to real hazy
images, the output synthetic hazy image has gaps with the real
one, leading to high-level tasks’ performance degradation in real
scenarios.

In summary, the existing haze dataset generation approaches
still have two neglected issues: 1) The majority of prior works
rely more on synthetic data and physics model than real haze
training images, which makes it challenging to adapt to complex
and changing scenarios in real-world industrial environments.
2) Conventional dataset generation approaches might introduce
artifacts such as color casting and noises at the same time,
which fails to preserve image details and degrades high-level
task performance in autonomous driving.

To address the issues mentioned above, multiple innovations
are combined together to build an deeply optimized image-to-
image translation framework that can truly facilitate the high-
level tasks performance improvement. Overall, we propose a
haze generation model called HazeGEN trained in a semisuper-
vised way. To directly learn from the real-world haze images
that have no paired “ground truth” (i.e., the pixel-to-pixel paired
clean images), multiple unsupervised-based losses are devel-
oped to leverage the knowledge from the real haze distribution.
To better preserve the details of the original clean images,
several supervised training losses are also leveraged based on
the paired training images synthesized following the atmosphere
scattering model [see (1)]. To jointly learn from both unpaired
and paired images, we enforce the constraint that the two kinds
of images share the same latent space so that the images from
the clean, real haze, and synthetic haze domains can be mapped
into the same latent code and transferred flexibly. Based on this
assumption, we introduce the VAE [9] as the image generator,
the effectiveness of which is further enhanced by the adversar-
ial training in GAN to avoid the high-level task performance
degradation caused by the low-resolution images generated by
VAE-only [10]. With all these components, we generate our
photo-realistic haze dataset for high-level task training.

In conclusion, our contributions are highlighted as follows.
1) One end-to-end haze generation model is developed,

which can automatically generates haze dataset that can

be used to truly boost the high-level task performance.
It is noted that the laborious dataset creation process
for industrial applications can be eliminated in a more
practical way in this work by: 1) demonstrating the su-
periority of the proposed HazeGEN over not only the
previous synthetic haze datasets, but also the prior de-
hazing works and the real-world collected datasets; 2)
measuring the similarity between our generated images
and the real-world annotated haze images directly on the
the high-level tasks in haze weather, rather than at the
pixel level or visual level as in prior works.

2) We are the first to integrate the shared latent space based
VAE-GAN into the semisupervised learning to generate
haze datasets. The proposed optimizations at the architec-
ture and algorithm levels enable highly effective learning
from both real haze images and prior knowledge for haze
modeling with few artifacts, which truly improve the
high-level task performance in haze weather.

3) The proposed model is extensively evaluated on two most
common tasks (object detection and semantic segmenta-
tion) in multiple challenging industrial scenarios, e.g.,
the real-world haze with diverse distributions (including
both the light and dense haze) and the haze-like weather
(including dark snow dust and heavy snow). Results show
that the performance is increased by as high as 10.03%
and 5.93% for object detection and semantic segmenta-
tion, respectively. The proposed method greatly surpasses
the state-of-the-art (SOTA) hazy generation methods in
accuracy, and outperforms the SOTA dehazing methods
in both speed and accuracy. These results demonstrate
its superiority in supporting the real-time and safety re-
quirements of autonomous driving under various weather
conditions.

II. RELATED WORK

A. Dataset Generation Methods in Haze Weather

Many works are proposed to synthesize datasets for haze
weather. Zoph et al. [11] used a data augmentation method to
generate annotated datasets. However, the method ignores the
difference between the style transformation and the mapping
from the 3-D physical world into the 2-D image domain. Li
et al. [12] used the atmosphere scattering model. However, it
introduces artificial flaws and color distortion due to the unavoid-
able measurement error. The defects lead to a degradation of the
performance on high-level vision tasks. Li et al. [13] proposed
an end-to-end learned model-based simulation method based on
the generative adversarial networks (GAN). However, the GAN
models cannot estimate the posterior and are unstable to train.
Another method called Cycle-GAN [14] is proposed by utilizing
unpaired training data in real-haze and clean days. But without a
supervised training constraint, this method leads to an undesired
conversion style (e.g., the loss of important details) [15].

B. High-Level Vision Tasks in Adverse Weather

High accuracy of high-level vision tasks such as object detec-
tion and segmentation are highly important for safe autonomous
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driving. However, most existing works focus on improving their
performance in clear days and only recent works explore adverse
conditions. Qin et al. [16] applied a preprocessing dehazing
model. However, they only paid attention to enhancing the image
quality rather than the high-level tasks’ performance. Vish-
wanath et al. [17] proposed an unsupervised physical-model-
based detection framework in hazy and rainy conditions. How-
ever, inevitable measuring error in the physical model makes
synthesized images include undesirable artifacts, affecting the
high-level tasks’ performance. Chen et al. [18] assumed that
the adversarial weather conditions result in the domain shift,
and they propose a domain adaptive Faster-RCNN to tackle the
domain shift problem. However, the synthetic dataset used in the
method exhibits a clear difference in appearance with real-world
images, which harms object detection performance in the real
scene. To conclude, previous attempts are still far from the goal
to generating natural hazy images that can benefit high-level
vision tasks.

C. Shared Latent Space

The basic assumption behind the image translations between
two domains is that some latent factors, such as the high-level
embedding features [19], [20], are shared by the source domain
and the target domain. Li et al. [21] indicated that a shared
manifold for observations can be learnt based on the Gaussian
process latent variable model. Furthermore, [22] and [23] used
the shared latent space assumption for handwritten pattern con-
version and face aging tasks, demonstrating this assumption’s
generalizability. Inspired by these works, we propose the Haze-
GEN framework based on the shared latent space assumption,
to map images from clean, synthetic, and real haze domains to
the same latent space and recover images from this space.

III. METHOD

In this section, the model architecture of the proposed Haze-
GEN is introduced first, followed by the loss functions for the
semisupervised training to show how the information in real
haze scenarios is learnt and how the artifacts are suppressed to
ensure the high performance of high-level tasks.

A. Model Structure

When approaching the image translation problem from the
probabilistic modeling view, the major difficulty is learning a
joint distribution from the marginal distributions in two different
domains since there exist an infinite number of joint distributions
that can lead to the specified marginal distributions [24]. To
address this ill-posed issue, we need to make an additional
assumption about the joint distribution.

Inspired by the works [21], [22], [23], we make the shared-
latent space assumption. In the assumed space, there exists a
shared latent code for any given pair of images x1 and x2. This
code allows us to recover both images from it. Following the
shared-latent space assumption, we build the domain transfor-
mations in this work as illustrated in Fig. 2.

Fig. 2. Shared latent space assumption among the real haze, syn-
thetic haze, and clean image domains.

Specifically, the generator (GEN ) of VAE and the discrim-
inator (DIS) from GAN are combined to build the image
translation framework as shown in Fig. 3. In each GEN , an
encoder–decoder (E–D) architecture is adopted to encode the
input image from one domain into the latent space z and decode it
into the target domain. The embedding in the shared latent space
z can be regarded as a compact, high-level embedding vector of
a scene, while the encoded result E(I) can be considered as
a particular sample in z. With the shared latent space, E(I) is
then reconstructed in a cross-domain or in-domain way with the
corresponding decoder D. The reconstructed image D(E(I)) is
then sent to the discriminator (DIS) to be distinguished whether
the generated images can be regarded as real images from the
input domain. SubNetwork roles are analyzed to demonstrate
how the proposed HazeGEN is different from prior work for
the similar task such as [25]. Note that {Es

h, D
s
h, DISs

h} and
{Eu

h , D
u
h , DISu

h} are separately illustrated to distinguish the
parameters iteratively updated by supervised and unsupervised
learning, but they share the same sets of VAE-GAN modules.

In each GEN (see Fig. 4), the encoding part mainly contains
two stride-2 convolutions and four residual blocks. We use the
stride-convolution layer to down-sample the feature maps by
1/2. The decoding part consists of four residual blocks and
two transposed convolutions. We use the transposed-convolution
layer to up-sample the features by a factor of 2. A skip connection
connects the encoder and decoder in the symmetric layer at
different resolutions. The number of output channels are shown
in Fig. 4. Each residual block consists of a convolution layer,
an instance normalization layer (IN) [26], and a ReLU activa-
tion layer. The discriminator (see Fig. 5) is constructed with a
convolution layer, an instance normalization layer, and a ReLU.
Motivated by Pix2PixHD [27], the output is down-sampled to
three scales to calculate the discriminator loss, which ensures
the hierarchical feature similarity is reserved in the generated
images.

B. Loss Function

The proposed semisupervised learning can be divided into two
stages: the supervised training and the unsupervised training,
which are performed in a step-by-step way. The whole process
is illustrated in Algorithm 1.

1) Loss in Unsupervised Training Stage: The unsupervised
training stage is supposed to extract real hazy distribution from
unpaired real hazy images. In this stage, the real weather image
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Fig. 3. The overall architecture of the HazeGEN which includes the VAE generator (GEN ) and discriminator of GAN (DIS). GEN contains an
encoder E and a decoder D. E and D are connected by a code in the shared latent space z. Different connections of E and D are responsible
for in-domain transformation ( e.g. Ic→c = Dc(Ec(Ic))) or cross-domain transformat ion ( e.g. Ic→h_s = Ds

h(Ec(Ic))). The shared modules for
synthetic and real haze are separately illustrated to distinguish the parameters iteratively updated during the supervised and unsupervised stages,
respectively.

Fig. 4. Overall architecture for generator (GEN ).

Fig. 5. Overall architecture for discriminator (DIS).

Ih_u is encoded into the shared latent space z via an encoder
Eu

h , and can be decoded into either the clean domain or the
original real haze domain via a different decodersDc orDu

h . The
generated results are then sent to the discriminator to distinguish
whether the generated image is the real data from one specific
domain. We use VAE loss LVAE to evaluate the reconstruction
likelihood and extract the encoder’s distribution representation.
GAN loss LGAN is further leveraged to ensure the quality of
the outputs through adversarial training. Following the setting
of [25], we set the same loss weights for LGAN and LVAE. The
combined VAE/GAN loss function in the unsupervised stage can
be written as

LVAE/GANunspv
(Ih_u) = LVAE(Ih_u) + LGAN→h(Ih_u) (2)

LVAE (Ih_u) = DKL (q (E
u
h(Ih_u)|Ih_u) ||p(z))

+ α ‖Du
h(E

u
h(Ih_u)) −Ih_u‖1 (3)

LGAN→h (Ih_u) = E [log (DISu
h (Ih_u))]

+ E [log (1−DISu
h (D

u
h (Eu

h (Ih_u))))] .
(4)

The VAE optimizes the encoder by imposing a prior over
the latent space on p(z), while making the decoded results
Du

h(Eh(Ih_u)) as close as possible to the original input Ih_u.
Eu

h(Ih_u) represents the latent space information z encoded
by Eu

h . The Kullback–Leibler divergence DKL evaluates the
distance between the encoded distribution q(Eu

h(Ih_u)|Ih_u)
and the distribution prior of zero Gaussian p(z). The last term
in LVAE stands for in-domain L1 loss to reconstruct the image
with high fidelity.

To further improve the high-level tasks’ performance, we
adopt the total variation (TV) loss in the unsupervised stage
to encourage spatial smoothness, which can enhance visibility
by removing unwanted details and preserving important details
such as edges:

Lt = ‖�hD
u
h (Eu

h(Ih_u))‖1 + ‖�vD
u
h(E

u
h (Ih_u))‖1 , (5)

where �h and �v represent the horizontal and vertical differ-
ential operation matrices, respectively.
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The total loss in unsupervised stage can be written as

Lunspv = LVAE/GAN (Ih_u) + ηLt (6)

where η is a hyperparameter that determines the contribution of
the TV loss Lt.

2) Loss in Supervised Training Stage: The main issue in the
supervised stage is to learn the atmosphere scatting model in
the paired training set, keep consistency between the inputs and
avoid image ill-rendering caused by unsupervised training. To
guide the transformation and learn valuable information, we
employ VAE/GAN loss in the supervised stage

LVAE/GAN(Ih_s, Ic) = LVAE (Ih_s) + LGAN→h (Ih_s)

+ LVAE(Ic) + LGAN→c(Ic) (7)

where Ih_s and Ic stand for synthetic hazy image and its cor-
responding clean image, respectively. Cross-domain L1 loss
is adopted to ensure that the cross-domain transformed image
D(E(I)) is close to the ground truth (i.e., the corresponding
pixel-to-pixel paired haze/clean images before transformation)

L1 = ‖Ds
h (Ec(Ic))− Ih_s‖1 + ‖Dc (E

s
h(Ih_s))− Ic‖1 . (8)

The total loss function in supervised-learning stage is

Lspv = LVAE/GAN (Ih_s, Ic) + βL1 (9)

where β reflects the importance of L1.
3) Shared Loss in Both Training Stages: Since shared latent

space assumption implies the cycle-consistency constraint [28],
we employ cycle consistency loss in both supervised and unsu-
pervised training stages to ensure that the reconstructed image
generated by the in-domain and cross-domain encoder–decoder
is the same as the original image

Lcyc = ‖Dc (Eh (Dh (Ec(Ic))))− Ic‖1

+ ‖Dh (Ec (Dc (Eh(Ih))))− Ih‖1 (10)

where Eh/Dh denotes the encoder/decoder for either synthetic
or real haze domain.

Note that the loss mentioned above mainly deals with im-
ages’ similarity at the pixel level. The per-pixel losses do not
capture perceptual differences between output and ground-truth
images. Therefore, we apply perceptual loss which is based on
a pretrained VGG-16 to measure the perceptual similarity in
feature space

Lp = ‖φ (Dc (Eh(Ih)))− φ(Ic)‖2

+ ‖φ (Dh (Ec (Ic)))− φ(Ih)‖2 (11)

where φ(·) represents the feature maps obtained by the relu5_3
layers within the VGG-16 network. The total loss function can
be expressed as

L = Lunspv + Lspv + δLcyc + γLp. (12)

The hyperparameters δ and γ control the importance of the
corresponding Lcyc and Lp, respectively.

Algorithm 1: The Process of the Semi-Supervised Learning
for HazeGEN.

IV. APPLICATION STUDY

In this section, we illustrate the effectiveness of our Haze-
GEN in two of the most common applications for autonomous
driving, i.e., object detection and semantic segmentation. The
datasets are generated based on the existing annotated clear day
dataset. They are then used for training different backbones to
improve these models’ performance in haze weather. Two widely
used metrics, mean Intersection-Over-Union (mIoU) and mean
Average Precision (mAP), are used to measure the performance.
mIoU is the average intersection over union across all classes,
which is the most commonly used metric for segmentation
accuracy. Its formulation is

mIoU =
1
n

n∑

i=1

TP(i)
TP(i) + FP(i) + FN(i)

(13)

where n is the total number of categories. TP , FP , and FN
represent true-positive, false-positive, and false-negative predic-
tions, respectively. mAP gives average accuracy of predicted
object locations across all object predictions. Its definition is

mAP =
1
n

n∑

i=1

APk(i) (14)
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Fig. 6. Visual comparisons of different generated datasets. The de-
fects of other methods are labeled by red boxes. The “Supervised-only”
generated haze can be barely seen and ill-rendering problems exist
on the car logo. Haze synthesized by other methods of Foggy/FoHIS-
Cityscapes is unnaturally concentrated, and their picture details are
corrupted, which lead to lower detection/segmentation accuracy. In our
method, the smoother distribution and better preserved details benefit
the high-level vision tasks.

where n stands for the number of categories, and APi is the
average precision (AP) of the class i. Higher mIoU or mAP
denotes better accuracy.

A. Implementations and Results for Dataset Generation

We train the proposed data generation network HazeGEN in
Pytorch framework and use ADAM optimizer for training. The
initial learning rate is 0.0001 and decreases by 0.75× every
30 000 iterations. The model is trained for 180 000 iterations
until it gets convergence. The weight decay is set as 0.00001.
The semisupervised training is performed by randomly sampling
4000 the labeled data from synthetic outdoor training set (the
synthetic haze data used for supervised training stage) and 4000
unlabeled images from realistic hazy images in RESIDE [29]
dataset (real haze data used for unsupervised training stage).
The input images are resized to the size of 256×256. The
data augmentation strategies, including horizontal and vertical
flipping, and random cropping are applied. We follow [28] to
preset the hyperparameters and then adjust them to get the best
experimental results. After the adjustment, the loss weights are
finally set as α = 1, β = 1000, δ = 10, γ = 0.5, and η = 0.5.
The network is trained on the NVIDIA V100 GPU.

The visual results are shown in Fig. 6. It is worth mentioning
that we observe that when more depth information is adopted
(e.g., in Foggy-Cityscapes), the unnaturally concentrated haze
distribution and corrupted details occur, which lead to lower
detection/segmentation accuracy as will be demonstrated in the
following experiments. In our generated images, by contrast,
there are smoother fog distribution and better-preserved details
after adding haze, so that they can truly facilitate high-level

Algorithm 2: Details of the Semantic Segmentation.

task performance improvement. The reason is that we propose a
semisupervised training method that can learn from both real and
synthetic haze images in an end-to-end way. As a result, instead
of directly leveraging the depth information of the atmosphere
scattering model, the optimal implicit depth prior is imposed
by the learning algorithm automatically from the perceptive of
benefiting machine vision algorithms.

B. High-Level Task Performance on Real-World Images

To validate whether the proposed biGM can really meet
the practical needs, we test semantic segmentation and object
detection performance on images collected in real scenarios.

1) Segmentation: Overall, the pretrained segmentation
model is finetuned with our generated haze dataset and previous
synthetic haze dataset, and the comparisons are made to evaluate
the finetuned models’ performance in real foggy weather. The
details of the semantic segmentation experiments are shown in
“Algorithm 2.”

The segmentation model DeepLabv3+[32] is constructed by
using MobileNetV3 as the backbone. We adopt annotated dataset
Cityscapes [33] as the basic clean image dataset to gener-
ate the corresponding foggy training set. Three representative
data generation methods, atmosphere-scatting-model based Fo-
HIS [34], depth-map-based Foggy-Cityscapes [5], and the more
recent domain-adaptation-based TUNIT [30] are selected in
comparisons. Besides, we make comparison with the simpler
data augmentation methods of contrast reduction and the lately
popular method of contrastive learning based segmentation
method [31]. We test the fine-tuned MobileNetV3 model with
Foggy Driving [5] dataset, which consists of a fine-annotation
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Fig. 7. Visual comparisons of the segmentation. Our segmentation result is closest to the ground truth with all of the critical instances for
automobile driving being successfully segmented. The predicting errors in the other methods are labeled by red boxes, among which the fire
hydrant (the grey area) cannot be correctly predicted. Other works also have difficulty in distinguishing the pedestrian on the sidewalk (the red
area).

Fig. 8. Visual comparisons for the object detection. We finetune the Faster-RCNN with different hazy datasets. It can be observed that the
detection model finetuned by our hazy dataset is the closest to the detection ground truth under both light and dense haze distributions. Models
trained by other hazy dataset make wrong predictions in real hazy weather.

Fig. 9. Our detection results on real-world haze-like images collected from the real autonomous driving system [35] to verify the generation
capacity of the proposed model. We evaluate our detection system under different light and weather conditions.
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TABLE I
QUANTITATIVE EVALUATION RESULTS OF THE SEGMENTATION RESULTS ON REAL HAZE DATASET FOGGY DRIVING

Fig. 10. Our generated dataset achieves the highest mAP compared
to other works (even higher than RealHaze-Train on DenseHaze) as
shown in (a), and has the closest accuracy compared to the RealHaze-
Train (b). (a) Accuracy tested on DenseHaze and RealHaze-Test. The
methods include training datasets or dehaze methods. (b) Per-Class
Accuracy on dense synthetic haze (left) and real haze (right).

set and coarse-annotation set for the evaluation of segmentation
in the real-world fog circumstance. The quantitative results are
listed in Table I and the visualization of segmentation is shown
in Fig. 7. It is shown in Table I that our haze dataset generation
method surpasses other models in both mAP and mIoU by large
margins. Also, our segmentation result in Fig. 7 is the closest
to the ground truth with all of the critical instances for automo-
bile driving successfully predicted. It should be noted that the
segmentation model trained on the atmosphere-scatting-model
based images FoHIS-cityscapes has even worse performance
than the clean dataset and the dataset augmented with the
simple contrast reduction method due to the artificial defects.
These results verify that our generated dataset can better improve
the high-level vision task performance.

The main reason for our work’s superiority is that the previous
synthetic datasets Foggy-Cityscapes and FoHIS-Cityscapes, and

the images produced by “Supervised-only” learning are gener-
ated only by using atmosphere scattering model, which ignores
the real hazy distribution. As for contrastive learning, it pays
more attention to the high-level features instead of the pixel-level
details, while the latter are necessary to build a hazy dataset that
can well facilitate the segmentation task. By contrast, our method
can better simulate the details and distribution of real-world hazy
scenes owning to the semisupervised training strategy, which is
effective in segmentation model finetuning.

Considering that dehazing is also one common way to pre-
process hazy images for higher high-level task performance,
we also conduct experiments with the state-of-the-art dehazing
methods, MADN-dehaze [2] and FFA-dehaze [16]. The fog is
removed via dehazing module before being put into the Mo-
bileNetV3. According to the Table I, our method outperforms the
dehazing segmentation pipeline in both segmentation accuracy
and processing speed since our method does not need the time-
consuming preprocessing involved in dehazing method. This
result proves that our method is more appropriate to be applied
to real-time tasks for autonomous driving.

2) Details of the Object Detection: To validate the general-
ization capacity of the proposed work, we further evaluate the
HazeGEN generated dataset on the object detection model.

Training and testing details are shown in Algorithm 3.
We choose ResNet101-based Faster-RCNN as the detection
model. FoHIS and HazeGEN methods are applied to synthe-
size HazeGEN-VOC and FoHIS-VOC foggy datasets based on
VOC2007 dataset [36]. By using these datasets, we fine-tuned
the pretrained Faster-RCNN to establish a stable CNN-based
detector for haze weather. We evaluated the model’s detection
accuracy on Real-world Task-driven Testing Set (RTTS) dataset,
which has 4322 natural hazy images with five annotated object
classes.

The experiment results are shown in Table II, Figs. 8 and
9, which prove that our method achieves satisfactory detection
results in mAP and outperforms other dataset generation meth-
ods and the previous dehazing-detection methods. Fig. 8 shows
that the models trained by other hazy datasets make too many
wrong predictions, while ours makes satisfying predictions that
are the closest to the ground truth for different haze distributions
(under the same settings). Fig. 9 shows the promising detection
results on images collected from real-world autonomous driving
system [35] for another two haze-like conditions, dark snow
dust and heavy snow. It can be observed that different light and
weather conditions have tiny affect on our model’s detection
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TABLE II
THE OBJECTION DETECLTION RESULTS (MEASURED BY AVERAGE PRECISION (AP%)) ON NATURAL HAZE RTTS DATASET

Algorithm 3: Details of the Semantic Segmentation.

accuracy, which verifies the robustness of the proposed Haze-
GEN against domain shift. These results are consistent with
those of segmentation, which demonstrates that the proposed
innovations, the semisupervised learning and the shared latent
space assumption for the VAE-GAN hybrid model, play an
important part in improving high-level task performance.

C. Performance Compared With Real-World Collected
Dataset for Challenging Industrial Scenarios

In this section, we evaluate different models’ detection mAP
and per-class AP on two challenging industrial scenarios for
comparison with the results of real-world collected haze dataset
to validate whether our synthetic hazy dataset can be a substitute
for the real-world dataset. These two scenarios are the real-world
haze images that have diverse distributions (RealHaze-Test)
from RTTS, and the dense synthetic haze images (DenseHaze)
from Foggy-Cityscape.

In Fig. 10(a), it is obvious that the model trained on our
dataset surpasses other models and has the closest accuracy
with RealHaze-Train. Specifically, for the detection mAP on
RealHaze-Test, ours surpasses its counterparts FoHIS and
MADN-Dehaze by a performance increase as high as 10%. For
dense haze testing, the model trained on our generated haze
performs even better than the RealHaze-Train dataset. These

TABLE III
ABLATION STUDY FOR LOSS FUNCTION ON REAL HAZE SCENARIOS

results demonstrate that our generated dataset can be used to
substitute RealHaze dataset in complex industrial scenarios with
various haze densities.

To step further, from the perclass accuracy in Fig. 10(b), we
can find that the model trained on our generated dataset has
the closest accuracy to the model trained on the RealHaz-Train.
By contrast, other methods have a large accuracy degradation
compared with the model trained with real haze images. This
demonstrates that our method can better simulate the charac-
teristics of real haze, which means that the realistic HazeGEN-
based produced images can be a good substitute for real-world
annotated dataset, which greatly alleviates the expensive and
time-consuming effort in collecting and annotating dataset for
high-level tasks in adverse weather.

D. Ablation Study

The ablation studies are performed to analyze how proposed
training losses and model contribute to the improvement in
high-level task performance in real scenarios. We remove the im-
portant losses or model components and evaluate their influences
on the segmentation task as shown in Table III. It can be seen that
the proposed/applied semisupervised losses and the important
components do take effect in improving the final performance.
Specifically, Lt for preserving important details in unsupervised
training and Lp to measure the perceptual differences obviously
improve the final performance. The advantages of the shared
latent space assumption (evaluated by removing the cycle con-
sistency loss Lcpc and L1 loss implied by this assumption) and
the coupling of VAE and GAN (evaluated by removing the GAN
loss LGAN ) are also demonstrated clearly.

V. CONCLUSION

In this article, we proposed an end-to-end dataset gener-
ation method to automatically generate training datasets for
high-level tasks in haze weather. We creatively combined the
semisupervised training strategy, shared latent space, and cou-
pled VAE-GAN to efficiently learn from both real-world haze
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distribution and atmosphere scattering model. Experiment re-
sults demonstrated significant performance improvement in var-
ious haze scenarios for the common high-level vision tasks
of autonomous driving, i.e., the object detection and semantic
segmentation. Compared with other methods, HazeGEN-based
generated dataset can be a much better substitute for the real-
world collected dataset, which demonstrates its great application
potential in improving the safety of real autonomous driving
systems.
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